

# The skin-in-the-game bond

A novel sustainable capital instrument

---



**Eva Verschueren**

24th International Congress on Insurance: Mathematics and Economics  
July 5, 2021

Joint work with K. Antonio, J. De Spiegeleer & W. Schoutens

# Outline of the presentation

1. Motivation
2. Features of the Skin-in-the-game Bond
3. Valuation of the Skin-in-the-game Bond
4. Data Example

# Motivation

---

## Introduction

The **skin-in-the-game** bond is a **sustainable capital** instrument.

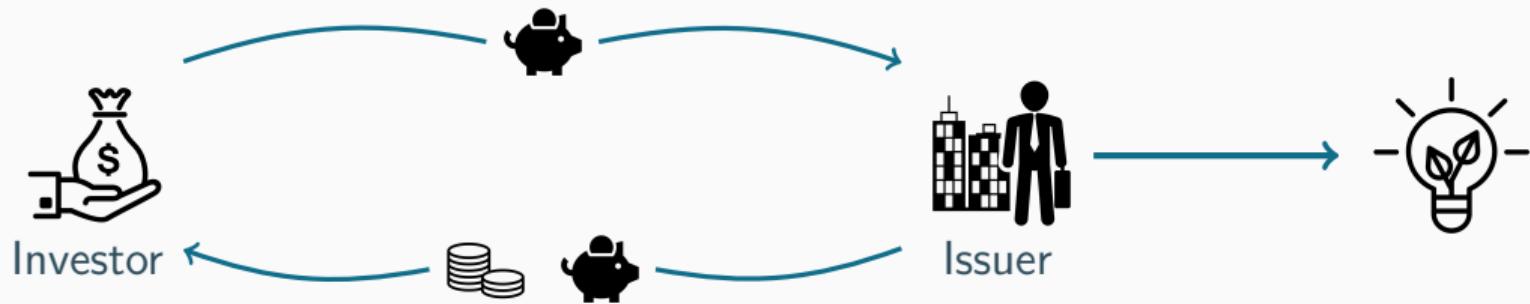
**Sustainable investing** refers to the process of taking due account of environmental (E), but also social (S) and corporate governance (G) considerations in investment decision-making [1].

A person having **skin-in-the-game** is directly involved in and affected by an action and its negative consequences, especially financially [2].

# Introduction

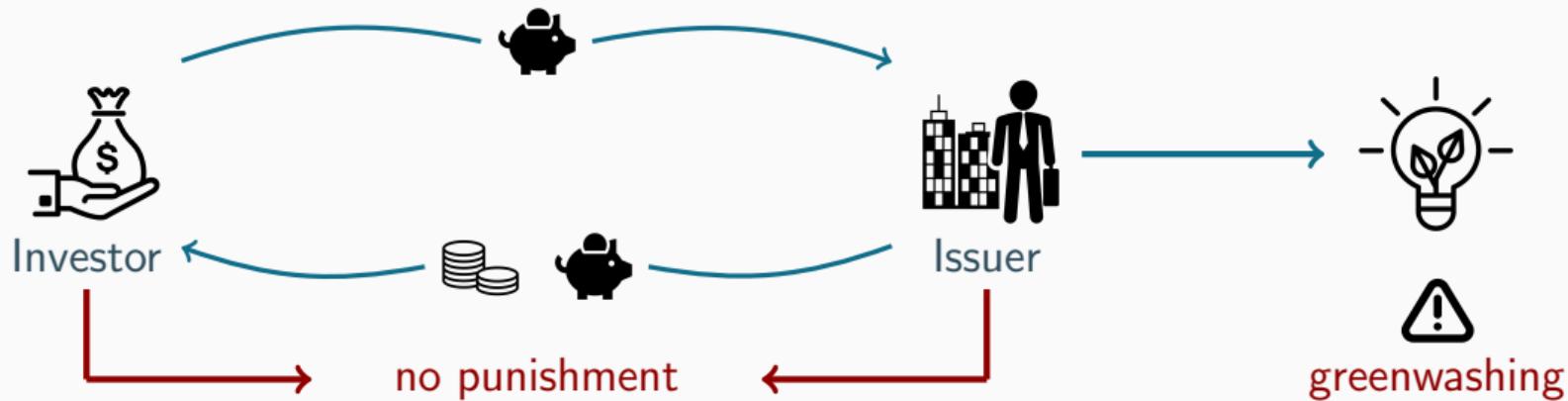
The **skin-in-the-game** bond is a **sustainable capital** instrument.

**Sustainable investing** refers to the process of taking due account of environmental (E), but also social (S) and corporate governance (G) considerations in investment decision-making [1].


A person having **skin-in-the-game** is directly involved in and affected by an action and its negative consequences, especially financially [2].

→ Lack of skin-in-the-game may cause moral hazard.

e.g. 2008 financial crisis, Deepwater Horizon oil spill ...


# Sustainable investing: green, social and sustainability bonds

Green, social and sustainability bonds are issued with the purpose of financing resp. a green project, social project or combination of both [3].



# Sustainable investing: green, social and sustainability bonds

Green, social and sustainability bonds are issued with the purpose of financing resp. a green project, social project or combination of both [3].



→ Both issuer and investor do **not** have skin-in-the-game.

## Sustainable investing: sustainability-linked bonds

Sustainability-linked bonds have varying financial characteristics, depending on whether the issuer achieves predefined sustainability objectives [4].

### Example - energy company **Enel** [5]

- ▶ Bonds were first issued in September 2019.
- ▶ Sustainable targets related to greenhouse gas emission and renewable energy.
- ▶ The bond's coupon increases if Enel fails to reach the sustainable targets.

# Sustainable investing: sustainability-linked bonds

Sustainability-linked bonds have varying financial characteristics, depending on whether the issuer achieves predefined sustainability objectives [4].

## Example - energy company **Enel** [5]

- ▶ Bonds were first issued in September 2019.
- ▶ Sustainable targets related to greenhouse gas emission and renewable energy.
- ▶ The bond's **coupon increases** if Enel fails to reach the sustainable targets.

→ The **issuer** has **skin-in-the-game**.

→ The **investor** has **no skin-in-the-game**.

# Sustainable investing: skin-in-the-game bond

Which parties do have skin-in-the-game in sustainable investing?

|                                      | Issuer | Investor |
|--------------------------------------|--------|----------|
| Green, Social or Sustainability bond | ✗      | ✗        |
| Sustainability-linked bond           | ✓      | ✗        |
| Skin-in-the-game bond                | ✓      | ✓        |

The skin-in-the-game bond is built on the principle that both parties, issuer and investor, should have skin-in-the-game and suffer if sustainability promises are not delivered.

## Features of the Skin-in-the-game Bond

---

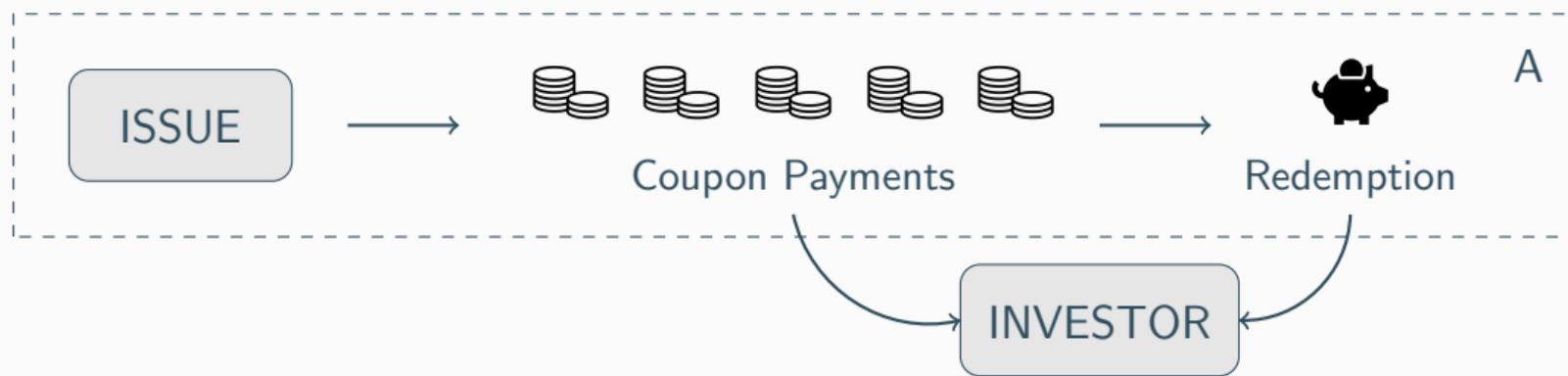
# The design of the skin-in-the-game bond

---

## Contingent Convertible [6]

---

|                     |                                      |
|---------------------|--------------------------------------|
| Issuer              | financial institution                |
| Benchmark           | related to the capital level         |
| Trigger event       | benchmark below a fixed threshold    |
| Trigger consequence | (part of) the face value is withheld |
| Withheld part       | to the issuer                        |

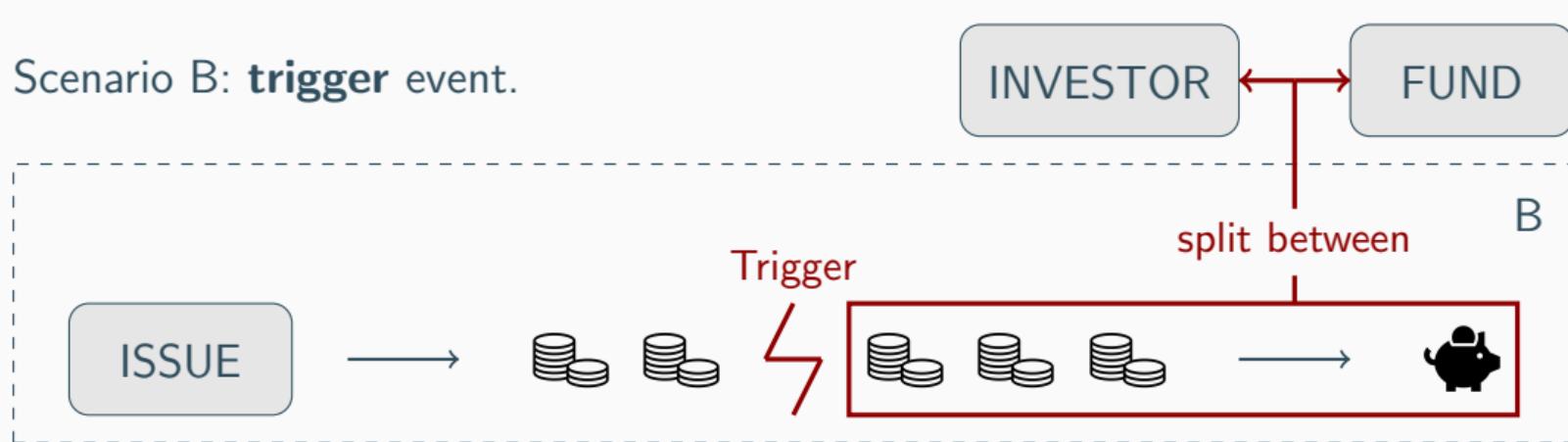

---

# The design of the skin-in-the-game bond

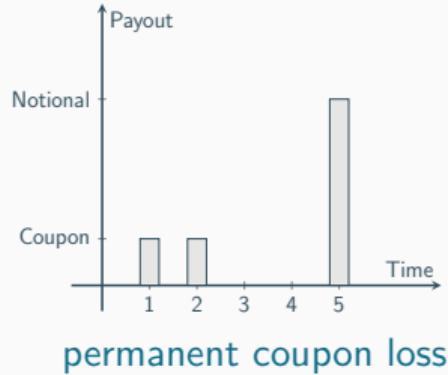
|                     | Contingent Convertible [6]   | Skin-in-the-game Bond                                  |
|---------------------|------------------------------|--------------------------------------------------------|
| Issuer              | financial institution        | company in any sector                                  |
| Benchmark           | related to the capital level | related to the broad concept of sustainability (E,S,G) |
| Trigger event       |                              | benchmark below a fixed threshold                      |
| Trigger consequence |                              | (part of) the face value is withheld                   |
| Withheld part       | to the issuer                | to an external fund                                    |

# The skin-in-the-game bond's life cycle

Scenario A: **no trigger** event.

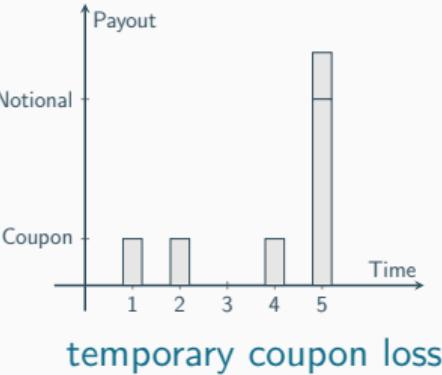



# The skin-in-the-game bond's life cycle

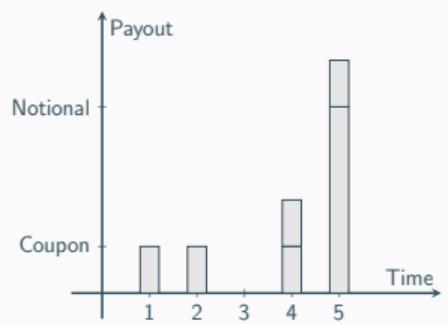


Scenario A: **no trigger** event.

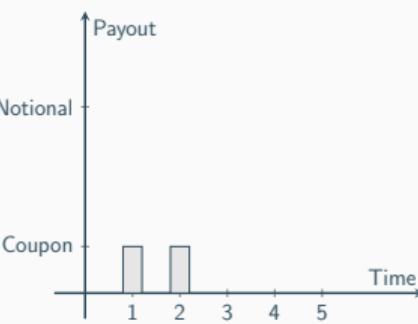



Scenario B: **trigger** event.




# Examples of trigger penalties




permanent coupon loss



temporary coupon loss



coupon withholding



full write-down

# Advantages

1. The **investor** has skin-in-the-game.
  - ▶ speculate on meeting the E, S and/or G related goals
  - ▶ cash-in an above risk-free coupon
2. The **issuer** has skin-in-the-game.
  - ▶ clear market driven incentive to optimize the level of the benchmark
  - ▶ excessive risk-taking and mismanagement are immediately punished
    - cost of capital increases
    - reputational risk
3. External **fund** makes sure that issuer is not exempt from payment and it may be used to cover costs related to trigger event.
  - e.g. oil spill, nuclear event ...

# Valuation of the Skin-in-the-game Bond

---

# The valuation of a skin-in-the-game bond

## Standard corporate bond

- ▶ subject to the issuer's bankruptcy risk
- ▶ offers a **yield**  $c = r + c_s$ , with  $r$  the risk-free rate and  $c_s$  the credit spread

## Skin-in-the-game bond

- ▶ trigger characteristic increases the probability for the investor to suffer a loss on the invested amount
- ▶ to compensate, a higher **yield**  $c = r + c_s + t_s$  is offered, with  $t_s$  the trigger spread

## The valuation of a skin-in-the-game bond

The **price**  $P$  of the bond is determined as

$$P = \sum_{t=1}^T \frac{\mathbb{E}_Q[C_t]}{(1 + r + c_s)^t} := N,$$

with  $T$  the maturity,  $C_t$  the cash-flow at time  $t$ ,  $Q$  the pricing measure, and  $N$  the notional.

$\mathbb{E}_Q[C_t]$  depends on the **trigger probability**  $PT_t$  and the trigger spread  $t_s$ :

$$\mathbb{E}_Q[C_t] = PT_t \cdot 0 + (1 - PT_t) \cdot c \cdot N = (1 - PT_t) \cdot (r + c_s + t_s) \cdot N.$$

## The valuation of a skin-in-the-game bond

The **price**  $P$  of the bond is determined as

$$P = \sum_{t=1}^T \frac{\mathbb{E}_Q[C_t]}{(1 + r + c_s)^t} := N,$$

with  $T$  the maturity,  $C_t$  the cash-flow at time  $t$ ,  $Q$  the pricing measure, and  $N$  the notional.

$\mathbb{E}_Q[C_t]$  depends on the **trigger probability**  $PT_t$  and the trigger spread  $t_s$ :

$$\mathbb{E}_Q[C_t] = PT_t \cdot 0 + (1 - PT_t) \cdot c \cdot N = (1 - PT_t) \cdot (r + c_s + t_s) \cdot N.$$

—————> If we estimate  $PT_t$ , we can **calculate**  $t_s$ , assuming  $r, c_s$  known.

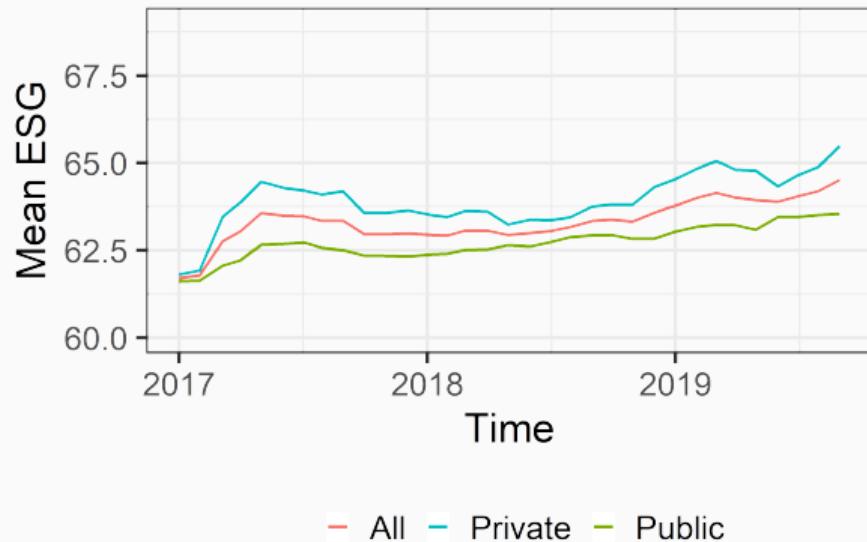
## Data Example

---

## The ESG skin-in-the-game bond

The ESG skin-in-the-game bond uses the **ESG rating of a company**, provided by a particular rating agency<sup>1</sup>, **as the benchmark** underlying the trigger mechanism of the bond.

- ▶ The trigger probability is determined by the probability that the issuing firm's ESG rating drops to or below the trigger level.
- ▶ Historical ESG data is used to estimate the trigger probability.


---

<sup>1</sup>Due to the differences across the ratings published by various ESG rating providers, the ESG skin-in-the-game bond should merely be seen as an illustrative example [7].

# ESG data

Data is provided by **Sustainalytics**.

- ▶ monthly data between January 2017 and September 2019
- ▶ companies are subdivided into public or private and grouped into 11 sectors
- ▶ ESG score between 0 and 100, higher score means better ESG practice



## The trigger probability (1)

We exploit the literature on credit ratings [8, 9] to estimate trigger probabilities.

Step 1 Transform the raw ratings into **ESG rating categories** [10].

| Rating category | C    | CCC   | B     | BB    | BBB   | A     | AAA    |
|-----------------|------|-------|-------|-------|-------|-------|--------|
| Raw score       | 0-48 | 48-54 | 54-61 | 61-69 | 69-74 | 74-79 | 79-100 |

## The trigger probability (1)

We exploit the literature on credit ratings [8, 9] to estimate trigger probabilities.

Step 1 Transform the raw ratings into **ESG rating categories** [10].

| Rating category | C    | CCC   | B     | BB    | BBB   | A     | AAA    |
|-----------------|------|-------|-------|-------|-------|-------|--------|
| Raw score       | 0-48 | 48-54 | 54-61 | 61-69 | 69-74 | 74-79 | 79-100 |

Step 2 Under the time-homogeneous, first-order Markov assumption, estimate a **transition probability matrix**, per company type and sector.

## ESG skin-in-the-game bond characteristics

The trigger spread depends on the bond's characteristics. We look at a specific example.

| Characteristics     | Bond-specific values                         |
|---------------------|----------------------------------------------|
| issuer              | public firm in communication services sector |
| risk-free rate $r$  | 0.010                                        |
| credit spread $c_s$ | 0.025                                        |
| duration            | 5 years                                      |
| notional $N$        | 100                                          |
| coupon frequency    | annual                                       |
| initial rating      | A                                            |
| trigger level       | BB                                           |
| trigger penalty     | permanent coupon loss                        |

## The trigger probability (2)

One-year transition matrix for a public firm in the communication services sector.

|     | C       | CCC     | B       | BB      | BBB     | A       | AAA     |
|-----|---------|---------|---------|---------|---------|---------|---------|
| C   | 0.53213 | 0.18029 | 0.22725 | 0.05577 | 0.00409 | 0.00042 | 0.00005 |
| CCC | 0.12705 | 0.47922 | 0.30573 | 0.08110 | 0.00618 | 0.00065 | 0.00007 |
| B   | 0.06587 | 0.10967 | 0.51331 | 0.27567 | 0.03119 | 0.00379 | 0.00050 |
| BB  | 0.00884 | 0.02761 | 0.12200 | 0.67539 | 0.14099 | 0.02163 | 0.00355 |
| BBB | 0.00089 | 0.00364 | 0.01845 | 0.19021 | 0.62482 | 0.13169 | 0.03031 |
| A   | 0.00009 | 0.00048 | 0.00263 | 0.03941 | 0.25367 | 0.58823 | 0.11549 |
| AAA | 0.00002 | 0.00012 | 0.00064 | 0.01078 | 0.08476 | 0.19875 | 0.70492 |

Step 3 Calculate the **trigger probability** based on transition probability matrix.

$$\text{e.g. } PT_1 = 0.03941 + 0.00263 + 0.00048 + 0.00009 = 0.04261.$$

## The trigger probability (3)

Step 4 Transform  $\mathcal{P}$  to  $\mathcal{Q}$ .

- ▶ transition probabilities based on historical data are under measure  $\mathcal{P}$
- ▶ pricing requires probabilities under pricing measure  $\mathcal{Q}$
- ▶ use transformation from Cariboni et al. [11]

|                    | Year 1  | Year 2  | Year 3  | Year 4  | Year 5  |
|--------------------|---------|---------|---------|---------|---------|
| $PT^{\mathcal{P}}$ | 0.04261 | 0.12309 | 0.20974 | 0.29175 | 0.36613 |
| $PT^{\mathcal{Q}}$ | 0.10174 | 0.21241 | 0.30324 | 0.37521 | 0.43258 |

## The trigger probability (4)

Step 5 Calculate the **trigger spread**.

$$\begin{aligned} P &= \sum_{t=1}^T \frac{\mathbb{E}_{\mathcal{Q}}[C_t]}{(1+r+c_s)^t} \\ &= \frac{0.89826cN}{1.035} + \frac{0.78759cN}{1.035^2} + \frac{0.69676cN}{1.035^3} + \frac{0.62479cN}{1.035^4} + \frac{0.56742cN + N}{1.035^4} \\ &= N = 100. \end{aligned}$$

We find  $c = 0.048567$ , with  $r = 0.010$ , and  $c_s = 0.025$ , this results in

$$t_s = \mathbf{0.013567}.$$

## Discussion on the trigger spread (1)

**Trigger spread (bps)** for a 5-year ESG skin-in-the-game bond with annual coupon payment, permanent coupon loss, and trigger level (column). The issuer has initial rating (row).

|     | C   | CCC | B   | BB  | BBB | A   |
|-----|-----|-----|-----|-----|-----|-----|
| CCC | 173 |     |     |     |     |     |
| B   | 107 | 223 |     |     |     |     |
| BB  | 40  | 90  | 228 |     |     |     |
| BBB | 15  | 35  | 84  | 300 |     |     |
| A   | 6   | 16  | 39  | 136 | 424 |     |
| AAA | 4   | 8   | 21  | 75  | 222 | 459 |



## Discussion on the trigger spread (2)

- ▶ The trigger penalty has a large impact on the trigger spread.
  - smallest spreads for a temporary coupon loss and coupon withholding penalty
  - largest spreads for a full write-down penalty
- ▶ Calculations are done for an average company within a specific sector. In reality, market mechanism will charge different yields for different companies.
  - lower yield if it is likely that promises are fulfilled
  - higher yield if it is likely that promises turn out differently than promoted

# Conclusion

We argue for the **skin-in-the-game bond** as a sustainable capital instrument with an embedded financial penalty related to E, S and/or G promises.

1. clear incentives to the **issuer** to reduce excessive risk-taking, reach sustainability goals and bring transparency
2. mechanism for **investors** to gain above risk-free returns in compensation for clearly upfront specified risks

→ skin-in-the-game is enforced and moral hazard risk is reduced

# Thank you!



eva.verschueren@kuleuven.be



[https://papers.ssrn.com/sol3/papers.cfm?abstract\\_id=3827001](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3827001)

# References

- [1] European Commission, "Action Plan: Financing Sustainable Growth," <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0097>, Brussels, pp. 1–20, 2018, online; accessed November 25, 2020.
- [2] W. Safire, "Skin in the Game," *The New York Times Magazine*, no. September 17, 2006.
- [3] M. Bhatia, "Green, Social and Sustainability Bonds," <https://www.sustainalytics.com/sustainable-finance/2019/03/19/green-social-and-sustainability-bonds/>, 2019, online; accessed November 27, 2020.
- [4] S. Keegan, "Beyond Green Bonds: Innovations in Sustainable Investing," AllianceBernstein: <https://www.alliancebernstein.com/library/beyond-green-bonds-innovations-in-sustainable-investing.htm>, 2020, online; accessed November 25, 2020.
- [5] Enel, "Sustainability-Linked Bonds," <https://www.enel.com/investors/investing/sustainable-finance/sustainability-linked-finance/sustainability-linked-bonds>, 2021, online; accessed July 2, 2021.
- [6] J. De Spiegeleer, W. Schoutens, and C. Van Hulle, *The Handbook of Hybrid Securities: Convertible Bonds, CoCo Bonds, and Bail-In*, 1st ed. Wiley Finance, 2014.
- [7] G. Dorfleitner, G. Halbritter, and M. Nguyen, "Measuring the level and risk of corporate responsibility: An empirical comparison of different ESG rating approaches." *Journal of Asset Management*, vol. 16, no. 7, pp. 450–466, 2015.
- [8] J. Kalbfleisch and J. Lawless, "The Analysis of Panel Data Under a Markov Assumption," *Journal of the American Statistical Association*, vol. 80, no. 392, pp. 863–871, 1985.
- [9] C. H. Jackson, "Multi-State Models for Panel Data: The *msm* Package for R," *Journal of Statistical Software*, vol. 38, no. 8, pp. 1–29, 2011.
- [10] H. Dahl and S. Larsen, "ESG: A new equity factor," Nykredit Asset Management holds, Tech. Rep., May 2014.
- [11] J. Cariboni, S. Maccaferri, and W. Schoutens, "Applying Credit Risk Techniques to Design an Effective Deposit Guarantee Schemes' Funds," in *Actuarial and Financial Mathematics Conference: Interplay between finance and insurance*. Royal Flemish Academy of Belgium for Science and Arts (KVAB), 2011, pp. 107–112.