

It takes two: the break-even strike of a call option from joint physical and pricing density estimation

Eva Verschueren

Joint work with D. Madan, W. Schoutens & S. Hölst

Outline

1. Concepts
2. Calculating Physical and Pricing densities
3. Data example

Introduction

1

What normal people see:

What Financial Engineers see:

\mathcal{P} -world

- ▶ Physical world
- ▶ Actual world in which payoffs are realized
- ▶ Physical density p estimates real probabilities

Expected Payoff ($t=0$)
 $= e^{-rT} \cdot \mathbb{E}_{\mathcal{P}}[\text{payoff}]$

\mathcal{Q} -world

- ▶ Pricing world
- ▶ Artificial setting under which one determines the price
- ▶ Pricing density q reflects price a representative agent is willing to pay

Price
 $= e^{-rT} \cdot \mathbb{E}_{\mathcal{Q}}[\text{payoff}]$

Under no-arbitrage condition

\mathcal{P} -world

- ▶ Physical world
- ▶ Actual world in which payoffs are realized
- ▶ Physical density p estimates real probabilities

Expected Payoff ($t=0$)
 $= e^{-rT} \cdot \mathbb{E}_{\mathcal{P}}[\text{payoff}]$

\mathcal{Q} -world

- ▶ Pricing world
- ▶ Artificial setting under which one determines the price
- ▶ Pricing density q reflects price a representative agent is willing to pay

Price
 $= e^{-rT} \cdot \mathbb{E}_{\mathcal{Q}}[\text{payoff}]$

Under no-arbitrage condition

The European Call Option - Expected Payoff

3

- ▶ European call option on asset S with maturity T and strike K
- ▶ Payoff $= (S_T - K)^+$

Expected Payoff European Call (at time 0)

$$= e^{-rT} \cdot \mathbb{E}_{\mathcal{P}}[(S - K)^+]$$

$$= e^{-rT} \cdot \int_{-\infty}^{\infty} (x - K)^+ p(x) dx$$

risk-free rate r

The European Call Option - Expected Payoff

3

- ▶ European call option on asset S with maturity T and strike K
- ▶ Payoff $= (S_T - K)^+$

Expected Payoff European Call (at time 0)

$$= e^{-rT} \cdot \mathbb{E}_{\mathcal{P}}[(S - K)^+]$$

$$= e^{-rT} \cdot \int_{-\infty}^{\infty} (x - K)^+ p(x) dx$$

risk-free rate r

- ▶ European call option on asset S with maturity T and strike K
- ▶ Payoff $= (S_T - K)^+$

Price European Call

$$= e^{-rT} \cdot \mathbb{E}_{\mathcal{Q}}[(S - K)^+]$$

$$= e^{-rT} \cdot \int_{-\infty}^{\infty} (x - K)^+ q(x) dx$$

risk-free rate r

Do both worlds agree at some point?

European call option

For a fixed maturity T , determine the **break-even strike** K_T such that

$$e^{-rT} \cdot \mathbb{E}_{\mathcal{P}}[(S - K_T)^+] = e^{-rT} \cdot \mathbb{E}_{\mathcal{Q}}[(S - K_T)^+]$$

- Expectations in both worlds are equal
- Expected return of European call = $\frac{\text{Price} - \text{Expected Payoff}}{\text{Price}} := 0$

Do both worlds agree at some point?

European call option

For a fixed maturity T , determine the **break-even strike** K_T such that

$$e^{-rT} \cdot \mathbb{E}_{\mathcal{P}}[(S - K_T)^+] = e^{-rT} \cdot \mathbb{E}_{\mathcal{Q}}[(S - K_T)^+]$$

- Expectations in both worlds are equal
- Expected return of European call = $\frac{\text{Price} - \text{Expected Payoff}}{\text{Price}} := 0$

Do both worlds agree at some point?

European call option

For a fixed maturity T , determine the **break-even strike** K_T such that

$$e^{-rT} \cdot \int_{-\infty}^{\infty} (x - K_T)^+ p(x) dx = e^{-rT} \cdot \int_{-\infty}^{\infty} (x - K_T)^+ q(x) dx$$

→ Efficient estimation of the physical density p and pricing density q is needed

Estimating Physical and Pricing densities

Estimating the Physical and Pricing density

7

Traditional approach

Physical density

- ▶ Estimated based on historical data
 - backward looking
 - only one new observation each day

Pricing density

- ▶ Estimated based on option data
 - forward looking
 - a number of new observations each day
- ▶ Depending on an asset pricing model

Estimating the Physical and Pricing density

7

Traditional approach

Physical density

- ▶ Estimated based on historical data
 - backward looking
 - only one new observation each day

Pricing density

- ▶ Estimated based on option data
 - forward looking
 - a number of new observations each day
- ▶ Depending on an asset pricing model

Estimating the Physical and Pricing density

7

Traditional approach

Physical density

room for improvement!

- ▶ Estimated based on historical data
 - backward looking
 - only one new observation each day

Pricing density

- ▶ Estimated based on option data
- forward looking
- a number of new observations each day

- ▶ Depending on an asset pricing model

rich source of information

Estimating the Physical and Pricing density

7

Traditional approach

Physical density

- ▶ Estimated based on historical data
 - backward looking
 - only one new observation each day

room for improvement!

?

Pricing density

- ▶ Estimated based on **option data**
 - forward looking
 - a number of new observations each day
- ▶ Depending on an asset pricing model

rich source of information

(Madan, Schoutens & Wang, 2020)

Step 1: Pricing density as U-shaped perturbation of physical density

Assumptions:

- ▶ Investors are risk-averse
- ▶ Investors have heterogeneous beliefs
 - long position is allowed
 - short position is allowed

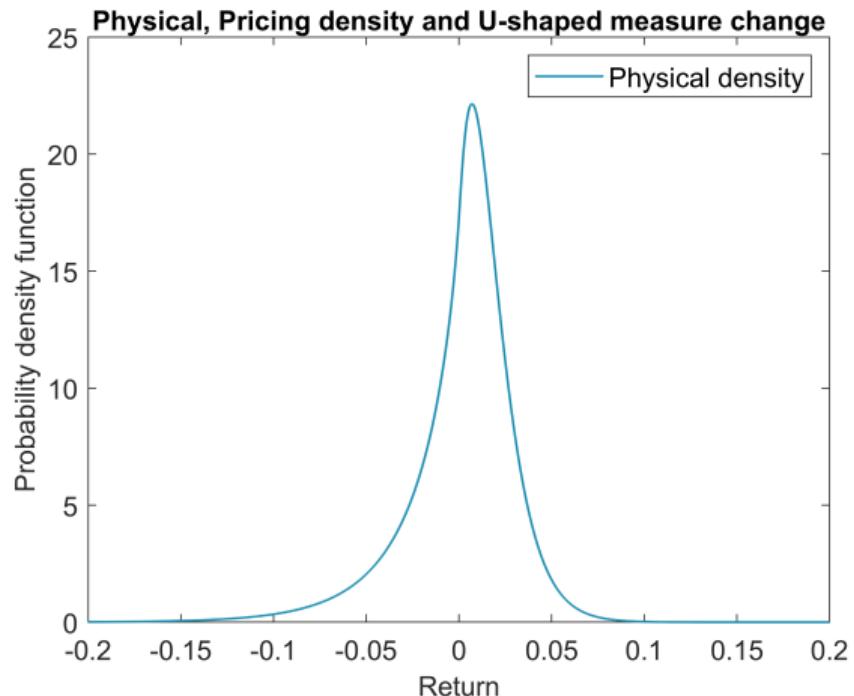
Empirical evidence in e.g. (Bakshi et al., 2010)

Alternative Physical density estimation - Step 1

9

(Madan, Schoutens & Wang, 2020)

- ▶ **Long investor:** wealth loss in negative return state
→ loss protection leads to heavier left tail
- ▶ **Short investor:** wealth loss in positive return state
→ loss protection leads to heavier right tail

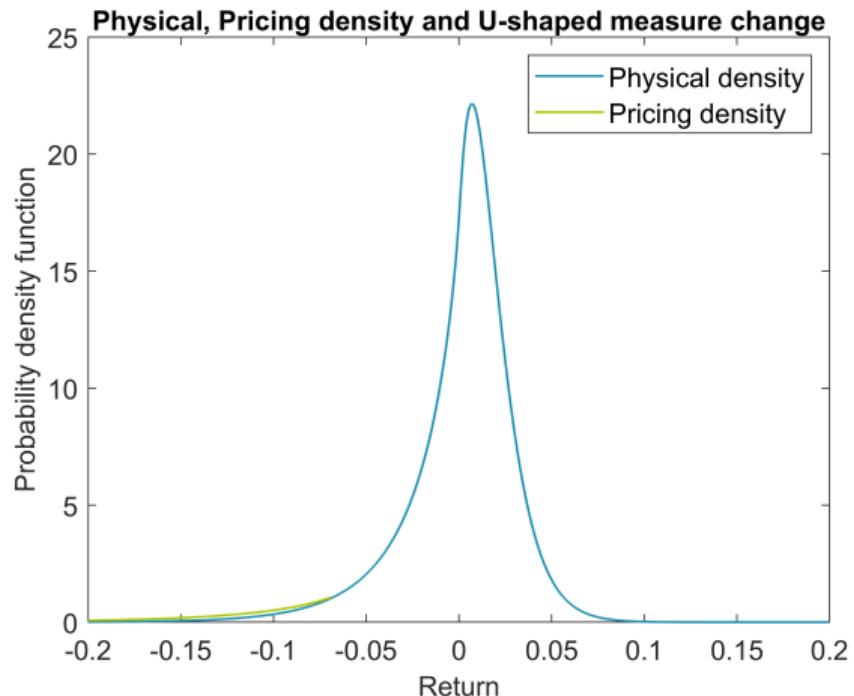


Alternative Physical density estimation - Step 1

9

(Madan, Schoutens & Wang, 2020)

- ▶ **Long investor:** wealth loss in negative return state
→ loss protection leads to heavier left tail
- ▶ **Short investor:** wealth loss in positive return state
→ loss protection leads to heavier right tail

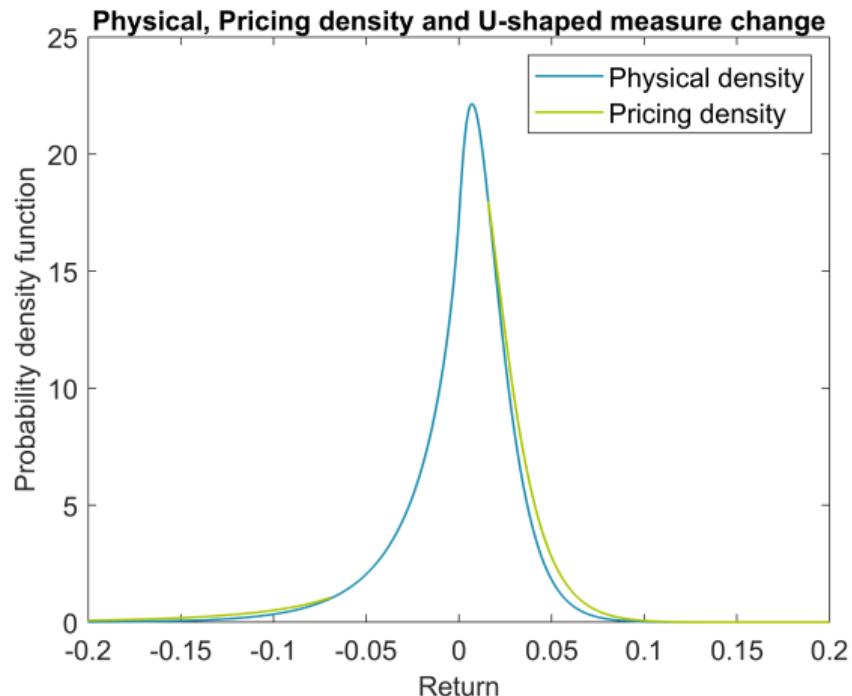


Alternative Physical density estimation - Step 1

9

(Madan, Schoutens & Wang, 2020)

- ▶ **Long investor:** wealth loss in negative return state
→ loss protection leads to heavier left tail
- ▶ **Short investor:** wealth loss in positive return state
→ loss protection leads to heavier right tail

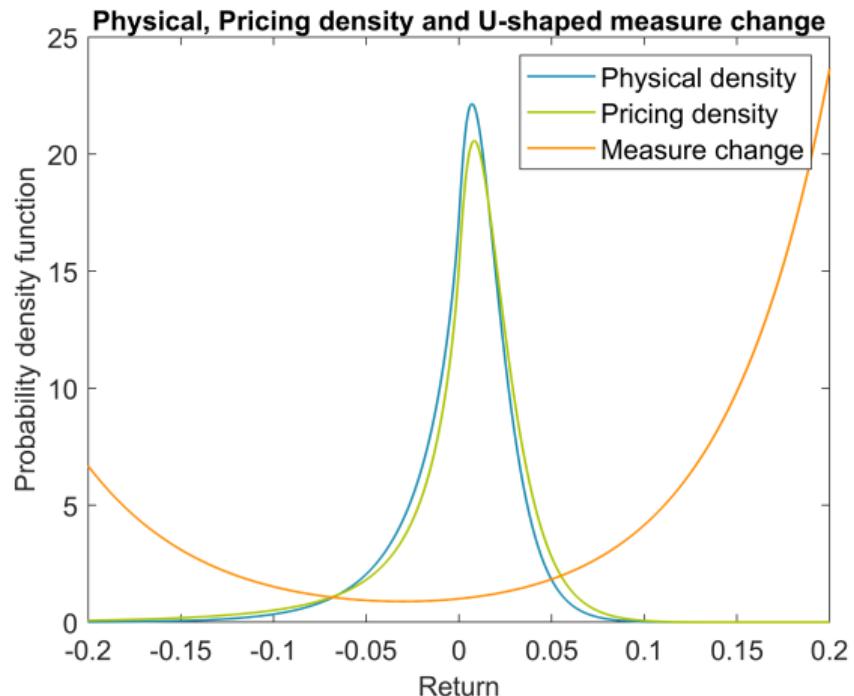


Alternative Physical density estimation - Step 1

9

(Madan, Schoutens & Wang, 2020)

- ▶ **Long investor:** wealth loss in negative return state
→ loss protection leads to heavier left tail
- ▶ **Short investor:** wealth loss in positive return state
→ loss protection leads to heavier right tail



(Madan, Schoutens & Wang, 2020)

Step 1: Pricing density as U-shaped perturbation of physical density

$$q(x) = C \cdot \left((1 - \alpha) \cdot e^{-\eta x} + \alpha \cdot e^{\zeta x} \right) \cdot p(x)$$

- ▶ C := normalization constant
- ▶ η := risk-aversion coefficient for being in a long position
- ▶ ζ := risk-aversion coefficient for being in a short position

Step 2: Physical density follows a Bilateral Gamma model

- ▶ Bilateral Gamma (Küchler & Tappe, 2008) models the asset as

$$\log(S_t) = \log(S_0) + b_p \cdot \gamma_p(c_p t) - b_n \cdot \gamma_n(c_n t),$$

where γ_p and γ_n are two independent standard Gamma processes

- ▶ Substantiated by different speed and scale for upward and downward movements of a stock (Madan & Wang, 2017)
 - Escalator up
 - Elevator down

Step 2: Physical density follows a Bilateral Gamma model

Physical density p

- ▶ Bilateral Gamma
- ▶ Characterized by $[b_p, c_p, b_n, c_n]$

$$\cdot C \cdot ((1 - \alpha) \cdot e^{-\eta x} + \alpha \cdot e^{\zeta x})$$

Pricing density q

- ▶ Tilted Bilateral Gamma
- ▶ Characterized by $[\eta, \zeta, \alpha, b_p, c_p, b_n, c_n]$

Step 2: Physical density follows a Bilateral Gamma model

Physical density p

- ▶ Bilateral Gamma
- ▶ Characterized by $[b_p, c_p, b_n, c_n]$

$$\cdot C \cdot ((1 - \alpha) \cdot e^{-\eta x} + \alpha \cdot e^{\zeta x})$$

Pricing density q

- ▶ Tilted Bilateral Gamma
- ▶ Characterized by $[\eta, \zeta, \alpha, b_p, c_p, b_n, c_n]$

Step 2: Physical density follows a Bilateral Gamma model

Physical density p

- ▶ Bilateral Gamma
- ▶ Characterized by

$[b_p, c_p, b_n, c_n]$

from option data

$$\cdot C \cdot ((1 - \alpha) \cdot e^{-\eta x} + \alpha \cdot e^{\zeta x})$$

Pricing density q

- ▶ Tilted Bilateral Gamma
- ▶ Characterized by

$[\eta, \zeta, \alpha, b_p, c_p, b_n, c_n]$

from option data

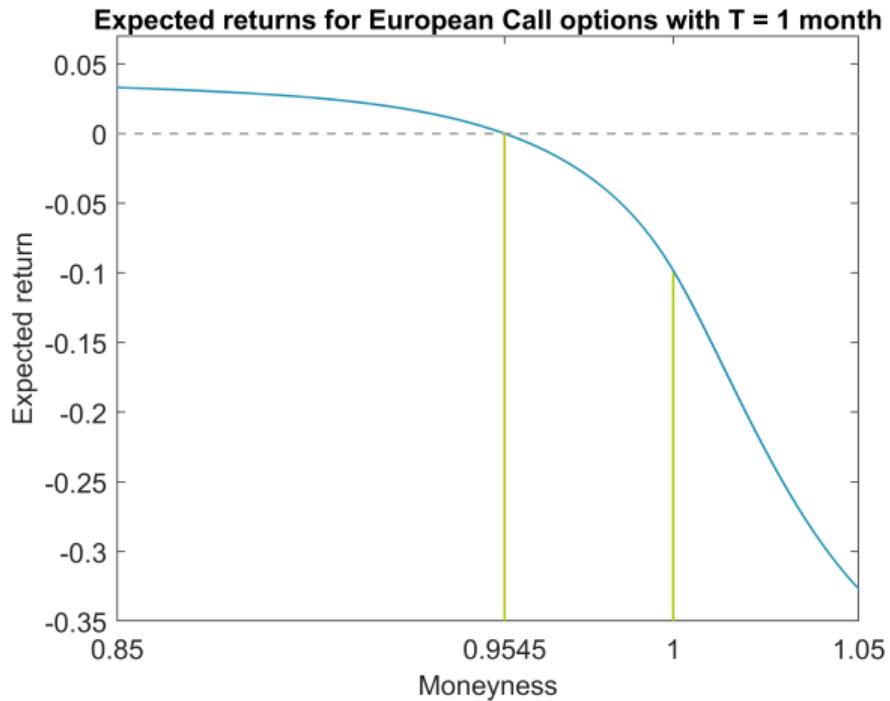
Expected return and break-even strike of a call option
illustrated based on S&P 500 index option data

Expected Return European Call on S&P 500 index

- March 15, 2018

13

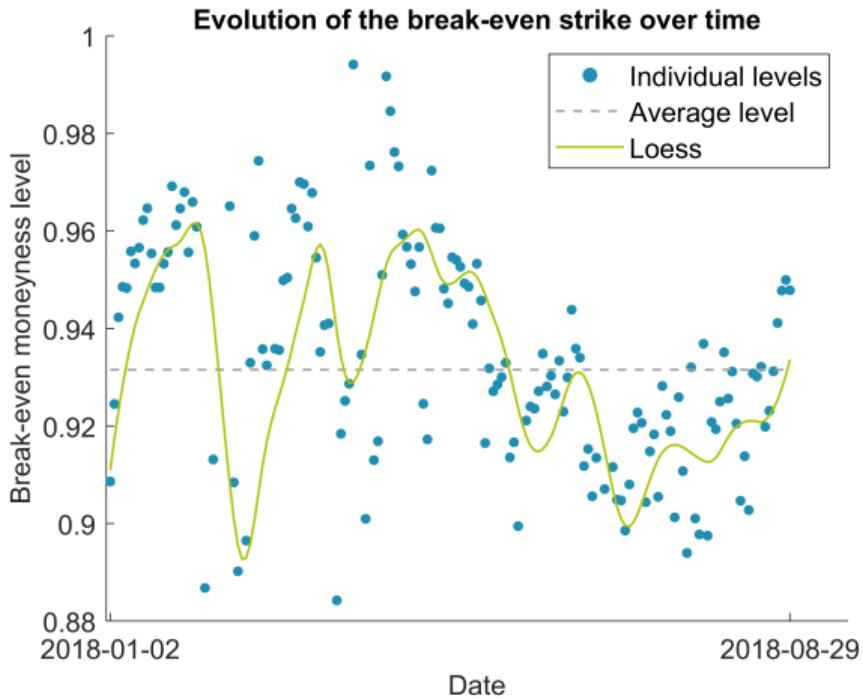
- ▶ Fixed $T = 1$ month,
 $0.85 \leq \frac{K}{S_0} \leq 1.05$
- ▶ Expected return is
decreasing with moneyness
→ theoretical implication
of U-shaped measure change
(Bakshi et al., 2010)
- ▶ Break-even strike
 $K_T = 0.95 \cdot S_0$



Evolution of the Break-even Strike S&P 500 index

14

- ▶ Average break-even moneyness level of 93.15%
- ▶ Break-even strikes are located in-the-money
 - further away in-the-money call options are **cheap**
 - at-the-money and out-of-the-money call options are **expensive**
- ▶ Day-to-day fluctuations are small in absolute value



- ▶ The **Tilted Bilateral Gamma model** makes it possible to simultaneously estimate both physical and pricing density based on **option data** of the underlying asset
- ▶ This provides enough information to find the **break-even** strike of a call option
 - the data example shows a **rather stable pattern** over time
 - break-even strikes of S&P 500 index call options are **in-the-money**

Thank you!

- ▶ Bakshi G., Dilip B. M. & Panayotov G. (2010). Returns of claims on the upside and the viability of U-shaped pricing kernels. *Journal of Financial Economics*. 97(1). pp. 130–154.
- ▶ Carr P. & Madan D. B. (1998). Option valuation using the fast Fourier transform. *Journal of Computational Finance*. 2(4). pp. 61-73.
- ▶ Küchler U. & Tappe S. (2008). Bilateral gamma distributions and processes in financial mathematics. *Stochastic Processes and Their Applications*. 118(2). pp. 261–283.
- ▶ Madan D. B., Schoutens W. & Wang K. (2020). Bilateral Multiple Gamma Returns: Their Risks and Rewards. *International Journal of Financial Engineering*. 7(1).
- ▶ Madan D. B. & Wang K. (2017). Asymmetries in financial returns. *International Journal of Financial Engineering*. 04(04). 1750045.

- 1 Find **option data** with prices of call and put options
- 2 **Calibrate** the Tilted Bilateral Gamma model parameters
 - a. Calculate model prices of call options, $EC(K, T)$, with (Carr & Madan, 1998) formula

$$EC(K, T) = \frac{\exp(-\alpha \log(K))}{\pi} \int_0^\infty \exp(-i\nu \log(K)) \varrho(\nu) d\nu,$$

where

$$\varrho(\nu) = \frac{\exp(-rT) \mathbb{E}_{\mathcal{Q}}[\exp(i(\nu - (\alpha + 1)i) \log(S_T))]}{\alpha^2 + \alpha - \nu^2 + i(2\alpha + 1)\nu}$$

- a. Minimize distance between model prices and market prices

- 3 Use an **inverse Fourier transform** to find the pricing density q and physical density p