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Introduction 1

What normal people see:

What Financial Engineers see:



Introduction to P and Q 2

P-world
I Physical world
I Actual world in which payoffs
are realized

I Physical density p estimates
real probabilities

Expected Payoff (t=0)
= e−rT · EP [payoff]

Q-world
I Pricing world
I Artificial setting under which one
determines the price

I Pricing density q reflects price a
representative agent is willing to pay

Price
= e−rT · EQ[payoff]

Under no-arbitrage condition
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The European Call Option - Expected Payoff 3

I European call option on asset S with maturity T and strike K

I Payoff = (ST − K )+

Expected Payoff European Call (at time 0)

= e−rT · EP [(S − K )+]

= e−rT ·
∫ ∞
−∞

(x − K )+p(x)dx

risk-free rate r
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The European Call Option - Price 4

I European call option on asset S with maturity T and strike K

I Payoff = (ST − K )+

Price European Call

= e−rT · EQ[(S − K )+]

= e−rT ·
∫ ∞
−∞

(x − K )+q(x)dx

risk-free rate r



Objective(s) 5

Do both worlds agree at some point?

European call option
For a fixed maturity T , determine the break-even strike KT such that

e−rT · EP [(S − KT )+] = e−rT · EQ[(S − KT )+]

−→−→ Expectations in both worlds are equal

−→−→ Expected return of European call = Price− Expected Payoff
Price := 0
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Objective(s) 6

Do both worlds agree at some point?

European call option
For a fixed maturity T , determine the break-even strike KT such that

e−rT ·
∫ ∞
−∞

(x − KT )+p(x)dx = e−rT ·
∫ ∞
−∞

(x − KT )+q(x)dx

−→−→ Efficient estimation of the physical density p and pricing density q is needed



Estimating Physical and Pricing densities



Estimating the Physical and Pricing density 7
Traditional approach

Physical density
I Estimated based on historical data

• backward looking
• only one new observation each day

Pricing density
I Estimated based on option data

• forward looking
• a number of new observations each day

I Depending on an asset pricing model
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Alternative Physical density estimation - Step 1 8
(Madan, Schoutens & Wang, 2020)

Step 1: Pricing density as U-shaped perturbation of physical density

Assumptions:
I Investors are risk-averse
I Investors have heterogeneous beliefs

• long position is allowed
• short position is allowed

Empirical evidence in e.g. (Bakshi et al., 2010)



Alternative Physical density estimation - Step 1 9
(Madan, Schoutens & Wang, 2020)

I Long investor: wealth loss
in negative return state
−→−→ loss protection leads to
heavier left tail

I Short investor: wealth loss
in positive return state
−→−→ loss protection leads to
heavier right tail
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Alternative Physical density estimation - Step 1 10
(Madan, Schoutens & Wang, 2020)

Step 1: Pricing density as U-shaped perturbation of physical density

q(x) = C ·
(
(1− α) · e−ηx + α · eζx

)
· p(x)

I C := normalization constant
I η := risk-aversion coefficient for being in a long position
I ζ := risk-aversion coefficient for being in a short position



Alternative Physical density estimation - Step 2 11

Step 2: Physical density follows a Bilateral Gamma model

I Bilateral Gamma (Küchler & Tappe, 2008) models the asset as

log(St) = log(S0) + bp · γp(cpt)− bn · γn(cnt),

where γp and γn are two independent standard Gamma processes

I Substantiated by different speed and scale for upward and downward
movements of a stock (Madan & Wang, 2017)

• Escalator up
• Elevator down



Alternative Physical density estimation - Step 2 12

Step 2: Physical density follows a Bilateral Gamma model

Physical density p
I Bilateral Gamma
I Characterized by

[bp, cp, bn, cn]

·C ·
(
(1− α) · e−ηx + α · eζx

)

Pricing density q
I Tilted Bilateral Gamma
I Characterized by

[η, ζ, α, bp, cp, bn, cn]
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Alternative Physical density estimation - Step 2 12

Step 2: Physical density follows a Bilateral Gamma model

Physical density p
I Bilateral Gamma
I Characterized by

[bp, cp, bn, cn]

·C ·
(
(1− α) · e−ηx + α · eζx

)

from option datafrom option data

Pricing density q
I Tilted Bilateral Gamma
I Characterized by

[η, ζ, α, bp, cp, bn, cn]



Expected return and break-even strike of a call option
illustrated based on S&P 500 index option data



Expected Return European Call on S&P 500 index
- March 15, 2018 13

I Fixed T = 1 month,
0.85 ≤ K

S0
≤ 1.05

I Expected return is
decreasing with moneyness
−→−→ theoretical implication
of U-shaped measure change
(Bakshi et al., 2010)

I Break-even strike
KT = 0.95 · S0



Evolution of the Break-even Strike S&P 500 index 14

I Average break-even
moneyness level of 93.15%

I Break-even strikes are
located in-the-money

• further away
in-the-money call options
are cheap

• at-the-money and
out-of-the-money call
options are expensive

I Day-to-day fluctuations are
small in absolute value



Findings and Conclusion 15

I The Tilted Bilateral Gamma model makes it possible to simultaneously estimate
both physical and pricing density based on option data of the underlying asset

I This provides enough information to find the break-even strike of a call option

−→−→ the data example shows a rather stable pattern over time

−→−→ break-even strikes of S&P 500 index call options are in-the-money



Thank you!
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Additional info: Joint estimation of the densities 17
1 Find option data with prices of call and put options
2 Calibrate the Tilted Bilateral Gamma model parameters

a. Calculate model prices of call options, EC(K ,T ), with (Carr & Madan, 1998)
formula

EC(K ,T ) = exp(−α log(K ))
π

∫ ∞
0

exp(−iν log(K ))%(ν)dν,

where

%(ν) = exp(−rT )EQ[exp(i(ν − (α+ 1)i) log(ST ))]
α2 + α− ν2 + i(2α+ 1)ν

b. Minimize distance between model prices and market prices

3 Use an inverse Fourier transform to find the pricing density q and physical
density p




